A Multiple Surrogate Assisted Decomposition-Based Evolutionary Algorithm for Expensive Multi/Many-Objective Optimization
نویسندگان
چکیده
منابع مشابه
A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contrib...
متن کاملMulti-objective optimization design of plate-fin heat sinks using an Evolutionary Algorithm Based On Decomposition
This article has no abstract.
متن کاملSurrogate based Evolutionary Algorithm for Design Optimization
Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic App...
متن کاملOn Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization
Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Evolutionary Computation
سال: 2019
ISSN: 1089-778X,1089-778X,1941-0026
DOI: 10.1109/tevc.2019.2899030